Certificates of convexity for basic semi-algebraic sets
نویسنده
چکیده
We provide two certificates of convexity for arbitrary basic semialgebraic sets of R. The first one is based on a necessary and sufficient condition whereas the second one is based on a sufficient (but simpler) condition only. Both certificates are obtained from any feasible solution of a related semidefinite program and so can be obtained numerically (however, up to machine precision).
منابع مشابه
Convexity in SemiAlgebraic Geometry and Polynomial Optimization
We review several (and provide new) results on the theory of moments, sums of squares and basic semi-algebraic sets when convexity is present. In particular, we show that under convexity, the hierarchy of semidefinite relaxations for polynomial optimization simplifies and has finite convergence, a highly desirable feature as convex problems are in principle easier to solve. In addition, if a ba...
متن کاملAnalysis of the Convergence Rate for the Cyclic Projection Algorithm Applied to Basic Semialgebraic Convex Sets
In this paper, we study the rate of convergence of the cyclic projection algorithm applied to finitely many basic semi-algebraic convex sets. We establish an explicit convergence rate estimate which relies on the maximum degree of the polynomials that generate the basic semi-algebraic convex sets and the dimension of the underlying space. We achieve our results by exploiting the algebraic struc...
متن کاملE. Lieb convexity inequalities and noncommutaive Bernstein inequality in Jordan-algebraic setting
We describe a Jordan-algebraic version of E. Lieb convexity inequalities. A joint convexity of Jordan-algebraic version of quantum entropy is proven. A version of noncommutative Bernstein inequality is proven as an application of one of convexity inequalities. A spectral theory on semi-simple complex algebras is used as a tool to prove the convexity results. Possible applications to optimizatio...
متن کاملNew bounds on the
A classic result in real algebraic geometry due to Oleinik-Petrovsky, Thom and Milnor, bounds the topological complexity (the sum of the Betti numbers) of basic semi-algebraic sets. This bound is tight as one can construct examples having that many connected components. However, till now no signiicantly better bounds were known on the individual higher Betti numbers. In this paper we prove sepa...
متن کاملConvexity and Geodesic Metric Spaces
In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Math. Lett.
دوره 23 شماره
صفحات -
تاریخ انتشار 2010